首页> 外文OA文献 >Rational approximations to rational models : alternative algorithms for category learning
【2h】

Rational approximations to rational models : alternative algorithms for category learning

机译:有理模型的有理逼近:类别学习的替代算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models is thus explaining how optimal solutions can be approximated by psychological processes. We outline a general strategy for answering this question, namely to explore the psychological plausibility of approximation algorithms developed in computer science and statistics. In particular, we argue that Monte Carlo methods provide a source of rational process models that connect optimal solutions to psychological processes. We support this argument through a detailed example, applying this approach to Anderson's (1990, 1991) rational model of categorization (RMC), which involves a particularly challenging computational problem. Drawing on a connection between the RMC and ideas from nonparametric Bayesian statistics, we propose 2 alternative algorithms for approximate inference in this model. The algorithms we consider include Gibbs sampling, a procedure appropriate when all stimuli are presented simultaneously, and particle filters, which sequentially approximate the posterior distribution with a small number of samples that are updated as new data become available. Applying these algorithms to several existing datasets shows that a particle filter with a single particle provides a good description of human inferences.
机译:假设人们有能力最佳地解决这些问题,理性的认知模型通常会考虑环境带来的抽象计算问题。这不同于更传统的形式化认知模型,后者关注行为的心理过程。因此,理性模型的一个基本挑战是解释如何通过心理过程来近似最优解。我们概述了回答这个问题的一般策略,即探索计算机科学和统计学中开发的近似算法的心理合理性。特别是,我们认为蒙特卡洛方法提供了将最佳解决方案与心理过程联系起来的理性过程模型的来源。我们通过一个详细的示例来支持该论点,并将此方法应用于Anderson(1990,1991)的合理分类模型(RMC),该模型涉及一个特别具有挑战性的计算问题。利用RMC和非参数贝叶斯统计方法的思想之间的联系,我们提出了2种替代算法,用于在该模型中进行近似推断。我们考虑的算法包括Gibbs采样(一种在同时显示所有刺激的情况下适用的程序)和粒子过滤器,这些粒子过滤器使用少量样本依次近似后验分布,并随着新数据的获得而更新。将这些算法应用于几个现有的数据集表明,具有单个粒子的粒子过滤器可以很好地描述人类推论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号